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A REVIEW OF THE LITERATURE ON CLEANING, PICKLING,
AND ELECTROPLATING PROCESSES AND RELIEF

TREATMENTS TO MINIMIZE HYDROGEN

EMBRITTLEMEI':T OF

ULTRAHIGH-STRENGTH STEELS

by

/
T. P. Groeneveld, E. E. Fletcher and A. R. Elsea

IN TRODUC TION

Atomic hydrogen is capable of entering steel and many other met._Is and alloys;

when itdoes• any of several undesirable phenomena can occur. Iflarge quantities of

hydrogen are introduced• there may be a general loss in ductility or_ ifthe hydrogen

accumulates in certain localized areas, internal bursts or blisters may be produced. At

elevated temperatures• hydrogen may react with and remove so much carbon from the

steel that the material is no longer capable of supporting the design stresses. Under

certain circumstances• hydrogen introduced into steel during its manufacturej subse-

quent fabrication, or in service r_ay result in b:ittle failures at applied stresses far

below the yield strength or the nominal design stress for the alloy. All of these phenom-

ena are collectively referred to as hydrogen embrittlement. However• only the last

i.e. • the catastrophics hydrogen-induced_ brittle failure of ultrahigh-strength structural

steels at relatively low applied stresses is of interest in the present program. Since

this phenomenon frequently occurs in materials that exhibit no appreciable loss in ductil-

ity (as measured by a conventional tensile test)• it is often termed hydrogen-induced,

delayed brittle failure, or hydrogen-stress cracking.

Ithas been shown that several conditions must be satisfied for hydrogen-stress

cracking of steels to occur:

(1) The steel must be processed to a strength level above some as yet

not clearly defined minimumS; generally• as the strength level of
the steel is increased above this minimum, the time for failure
decreases.

(Z) The steel must be subjected to an applied tensile stress above some

minimum value that is dependent on the strength level of the steel;

as the strength level of the steel increases, the minimum applied

stress that wiil result in hydrogen-stress cracking decreases.

(3) "['he steel must contain hydrogen in excess of some minimum amount,

and this hydrogen must be free to diffuse through the steel.

In view of these conditions, it would be expected that any condition that alters the

strerLgth, applied stress, or hydrogen content of a given material could influence its

sen_,itivity to hydroge-_-stress cracking. The trend toward higher tensile strengths,

higher design stresses, and the use of materials in applications requiring prolonged ex-

posure to high sustained loads insures that two of the conditions necessary for the

• Nowell-authenticated failures have resulted from hydrogen-stress cracki.g in steels with ultimate tensile _trengths below

10O.000 psi.
B A T TIr L L Ir M $" M 0 R I A I,. I N $ Y I T U T I[
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occurrence of hydrogen-stress cracking willbe present in steel parts intended for cer-
tainaerospace and aircraftapplicatinns. Ali that remains is for -_nadequate supply of
hydrogen to be availableand for this h-,drogento be free to diffv3ethrough the steel.
Thus, itappears that,for high-strength steelssensitiveto hydrogen-stress crackingj
the most important factors tending to promote hydrogen-stress cracking under these
conditionsare the hydrogen content of the material and the pr_,pensityof the material to

absorb hydrogen from its environzncntj either during processing or in service.

The source of the _:lydrogenin the metal is of l_ttleimportance. Itcan be intro-

duced during steelmaking or heat-treatingoperations;during cleaning, pickling, or
electroplati_gprocesses; or itmay be picked up from the service environment as a
resultof cathodic protection reactions or corrosion reactions, for example. In shortj
any process thatpresents atomic hydrogen to the steel, whether by thermally activated

dissociationof hydrogen-gas molecules, electrochemical reaction, or chemical reac-
tion_ is capable of introducing sufficienthydrogen to cause failure. Unless such pro-

cesses are avoided, or unless the hydrogen introduced is removed from ultrahigh-
strength steelsbefore permanent damage occurs, the potentialexists for failureof these
materials in service.

The problem of hydrogen-stress cracking'of ultrahigh-strengthsteels has become
quite serious in the aerospace and aircraftindustriesbecause many of the components
fabricated from these high-strengti"__,ee_.sh_ve to be protected from corrosion in their

service environments. The preferred method of providing thig protectionis cadmium
electroplating. However, the applicationof electrodeposit,-,dcoatings to solve corrosion

problems can make the part f_usceptibleto failureby hydrngen-stress cracking because,
frequently,hydrogen :-si_troduced during the cleaning and _iectroplatingoperation.

As a resultof failuresattrihutedto hydrogen-stres,, c__cking and because of the
possibilitythat additional res might occur, the Air Fc:rc,a few ye_,rsago prohib-
itedthe use of cadmium elcctroplatingof certain steelshav!_g strengths greater than
_0,000 psi. Thus, itwas _ecessary for manufacturers ", _.'_sortto other methods of

providing corrosion protect_-nthat were inferiorto cad;'o_'-,_n electroplating. Conse- _

quently_ many studies of elec_roplatingprocesses, _r!_,_iarly cadmium electroplating, ;
have been conducted to determine whether one or r_,, :_;)cessescould be used for

electroplatingultrahigh-strengthsteels w:thout the _/..,i_hood of encountering hydrogen-
stress-cracking failures.

These studies showed that most ultrahigh-strengthsteels were enbrittledto

various degrees by virtuallyall of the commo_ electroplatingprocessesj including
cadmium, chromium_ zinc, tin, nickel, lead_ copper_ and silver. These early studies
also showed thatthe amovnt of hydrogen entering steel specimons during certain electro-

platingprocesses may be as great as that introduced during severa cathodic chargin[i_
and thatmore hydrogen sometimes was introduced during picklingor cathodic cleaning
prior to electroplatingthan during the actual platingoperation. In additionj these
studies showed that the sustained-load tensiletest employing notched bars was the most
sensitivemethod for evaluatingthe embrittlingtendencies of cleaning and electroplating
processes.

A report w_s prepared during the previous contract period_ that described the re-

sultsof a literatureand industrialsurvey on hydrogen embritflement resultingfrom
conventional cleaning, pickling_and electroplatingprocesses{l)*; the results of numer-

ous investigationsintothis problem area were included. Several cleaning and

"P_'fcrencesar_ listcdattheendofthisreport,beginningonpage37.
8 J_ T T I[ i. I.. I[ M Ir ki O N I A L i N S T I T U T I[
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ele,-t_oplating processes that were reported to be essentially nonhydrogen embrittling

also w_r_ aescribed. In addition, a review of the hydrogen embrittlement of steels,

nickel-base alloys, and titanium alloys was presented. This report served as the back-

ground fc- the present survey.

The present report describes the results of a literature and industrial survey of

reportedly low-hydrogen-embrittling and nonhydrogen-embrittling cleaning, pickling, /
and electroplating processes (including cadmium, chromium, and nickel electroplating)

and of various hydrogen-embrittlement relief treatments. No attempt has been made to

repeat the information on the embrittling efiects of co_L,', _t:onal processes in the present

report. However, it was found desirable to include s,_x ..... ".'ference to work described

previously (especially in the area of cleaning processe_ to provide necessary back-

ground information or to make desir;_ble comparisons.

The main purpose in conducting the present survey was to obtain information to aid

in the selection of cleaning and electroplating processes to be studied in the present term

of the research program.

NONHYDROGEN- EM',3RIT TLING C LEANING

AND PICKLING PROCESSES

During processing and fabrication, metals and alloys frequently acquire scale or

oxide coatings, as well as _ther surface contamination, such as oil, grease, and dirt.
It is essential that parts be clean before painting or electroplating them, if satisfactory

adherence is to be obtained. Therefore_ various cleaning processes ._re employed to re-

move the surface contaminants. The cleaning processes commonly employed for the re-

moval of surface oxides includ_ mechanical cleaning (such as grit blasting and tum-

bling), salt-bath descaling_ alkaline descaling, and acid pickling; those commonly used

for the removal of oil, grease, and dirt are alkaline cleaning, emulsion cleaning,

solvent cleaning, and vapor degreasing (2). Some of these cleaning processes may be

performed cathodically or anodically to facilitate the cleaning action. Y

Select.':,n of the cleaning process is influenced mainly by the type of surface con-

tamination to be removed, the required degree of cleanliness ; and the cost.

Those processes commonly employed in the cleaning of steels that are considered

to be nonhydrogen-embrittling processes include dry mecha-ical cleaning, solvent

cleaning, vapor degreasing, and anodic cleaning {acid or alkaline). Although there are

few data in the literature on the embrittling tendencies of these cleanin_ processes, none

of the processes depend for their cleaning action on a reaction that deposits atomic hy-

drogen on the workpiece.

Iv many studies in which the embr,"..ttling tendencies of various electroplating pro-

cesses have been evaluated_ inve,_tigators have prepared the specimens by vapor de-

greasing and dry-abrasive cleaning. In no case was it reported that the test specimens
were embrittled after this preparation. However_ Swets_ Frank, and Fry (3) using a

sensitive ion-gage detector_ demonstrated that hydrogen permeated an SAE 4340 steel

cylinder with a waU thickness of 0. 020 inch during abrasion with dry abrasive paper.
When the abrasive paper was soaked in water, the permeation rate increased significantly.
This behavior was attributed to simple corrosion that was accelerated by continual

ID A T T E i. i.. Ir M Ir ki O N I A I. i N S T i T U T E
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exposure of fresh metal during abrasio**. Water vapor in the air constituted the source c

of hydrogen when dry abrasive paper was used.

Anodic cleaning processes are nonhydrogen embrittling, because the workpiece ¢

is made the anode during electrolysis and, consequently, no hydrogen is deposited on it.

However, when anodic cleaning processes - particularly acid anodic cleaning pro-
cesses - are used, the parts should be placed in the bath with the current on to prevent

hydrogen pickup due to chemical reaction with the electrolyte. Also, the parts must be

rinsed thoroughly immediately after completion of the anodic treatment to minimize any

pickling or corrosion reactions that might occur as a result of cleaning solution remain-

ing on the parts. Also, rinse baths should be changed continually to prevent undue co,,-
tamination by the cleaning solutions; this is especially important if the cleaning solutions

are acidic. In this respect, investigators at Boeing(J4), using the Lawrence hydrogen-

detection gage, found that the rinses following pickling and electroplating introduced

cc nsiderable hydrogen into the parts being treated. They changed their process by re-

quiring that the parts be rinsed in overflow tanks in which the rinse baths are changed
at least once every hour.

Probert and Rollinson (5) found that anodic treatment of several high-strength

steels in dilute sulfuric acid at room temperature for 1 minute induced some embrittle-

ment. However, when they emp!oyed the procedures described previously to minimize

pickling reactions before and after the actual anodic treatment, ernnbrittlernent was

negligible except on high-carbon steels, which apparently are embrittled by very small

amounts of hydrogen. These investigators also found that by anodically removing about
3 mils of material from steels that were severely ernbrittled by cathodic cleaning

processes, full ductility (as measured by a slow-bend test) was restored(6). However,

as pointed out in the introduction, restoration of ductility does not necessarily indicate

freedom from hydrogen-stress cracking as measured by the more sensitive sustained-
load test.

Alkaline descaling also has been reported to provide complete freedom from

hydrogen ernbrittlement(_). This process also has the advantage of not attacking the
base metal; this is because the chemical reaction stops when rust or scale removal is

complete. However, alkaline descaling is more costly and slower in its action than

acid pickling. _ number of proprietary alkaline descaling compounds are available;

they are composed primarily of sodium hydroxide (60 percent or more), but also contain

chelating agents.

In spite of its ernbrittling effects on ultrahigh-strength steels, acid pickling is

still the most commonly used descaling method, because it is generally cheaper, it

usually does not require special equipment or controls, and, except for mechanical

descaling, it is generally faster than other methods. Consequently, the greater portion

of the effort expended in evaluating hydrogen embrittlement that results from cleaning

processes and in developing low-embrittling procedures has been expended on acid-

pickling processes.

It has been shown that nearly all common acid-pickling processes can severely

embrittle ultrahigh-strength steels and that cathodic pickling increases the embrittle-

ment(l). However, oxidizing acids (particularly nitric acid) have been reported to be

essentially nonhydrogen embrittling (7,8). The unique behavior of nitric acid with re-

spect to hydrogen ernbrittlement is related to its oxidizing characteristics. Metals re-

act with nitric acid by "eplacing hydrogen to form the corresponding nitrates, and the

hydrogen evolved during this process is immediately consumed, with the formation of
BATTELLE MEMORIAL INSTITUTE
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compounds containing nitrogen of lower valency. However, Balezin and Nikol'skii (9, 10)

and Hudson, Norris, and Stragand(11) reported that under certain circumstances nitric /.
s:id solutions can cause embrittlement of steel. Balezin and Nikol'skii found that steels

containin 5 0. 17, 0.6, 0.9, and 1. 1 percent carbon, respectively, did not absorb hydro-

gen when pickled in 1.5 N and ZN nitric acid solutions, but did absorb hydrogen in

0.5 N nitric acid solution. The range of nitric acid concentration that produced the most
severe embritthment in steel wire at 64 F was from 0.3 to 0.8 N. They attributed

this embrittlement to the likelihood that not all of the hydrogen evolved was oxidized. /

The reason why oxidizing acids are not employed more widely as a simple means

of avoiding hydrogen troubles without resorting to an external potential is that practi-

cally every oxidizing acid or acidic mixture introduces some new objection. Nitric

acid, for example, is unpleasant because of the fumes evolved and because of its action
on the skin.

The method most frequently used to reduce problems related to both metal attack

and hydrogen liberation in acid pickling is to add inhibitors to the pickling bath. Until

the hydrogen embrittlement of ultrahigh-strength steels became a serious problem, in-

hibitors were used primarily to minimize metal loss, to protect the metal against pit-

ting (caused by overpickling) and reduction in surface quality, to reduce acid fumes re-

sulting from excessive reaction between the acid and basis metal, and to reduce acid

consumption. Even at the present time, for lower strength steels these functions are

still the primary reasons for adding inhibitors to acid pickling baths.

With the trend toward the use of steels for structural applications at increasingly

higher strength levels, hydrogen-stress cracking became a problem to be reckoned
with in the 1950s. Since that time, many evaluations of the effectiveness of inhibitors

for reducing hydrogen pickup from pickling baths have been conducted.

Evans(1Z), in describing the use of inhibitors to minimize hydrogen embrittle-

ment, pointed out that if the only objective in using an inhibitor is to reduce the metal

loss and the consumption of acid_ any substance that obstructs any one of the several

essential steps of the corrosion process3 such as the anodic reaction or the cathodic

reaction, can be used. Howeverj in practice, an inhibitor must meet other require- J

ments. Reducing th_ total metal corrosion, which is equivalent to reducing the total

amouat of hydrogen produced, does net suffice. It is particularly necessary to reduce

that fraction of the hydrogen that enters the metal and causes either blistering or crack-

ing.

- _-_(13)
Zapffe and Hasie_. studied the effects of 15 commercial inhibitors on hydrogen

embrittlement and found that the chemical composition of the steel was the deciding fac-

tor in determining the efficiency of the inhibitor. Practically all the commercial inhi-

bitors failed completely when pickling stainless steel. In fact, 11 of them were reported

to increase hydrogen embrittlement. On a mild steel (0.18 percent carbon), the results
were somewhat better. Of the 15 inhibitors investigated, seven failed completely, four

prevented hydrogen embrittlement when used in quantities that greatly exceeded the

usually recommended concentration, and the four remaining inhibitors proved to be ef-

fective in preventing hydrogen embrittlement when used in the prescrgbed quantities.

Zapffe and Haslem(14) also investigated the effect of surface-active substances

added to acid pickling baths on the hydrogen embrit_:lement of stainless steel and carbon
steel (0. 18 percent carbon). Surface-active substances facilitate wetting of the material

with the acid_ but they do not accelerate the actual pickling process. Generally, they do

B A T T E L. I.. E M E M O R i A L I N S T I T U T E
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not have significant inhibiting action, and the inhibiting effect is further reduced with

increasing temperature. However, the investigators found that the addition of nonioniz-

ing wetting agents resulted in a reduction or prevention of hydrogen embrittlement in the

carbon steel. Particularly good results were obtained with polyethylene glycols having

a complex molecular structure. The efficiency of these wetting agents increased with

their molecular weight. The cation- and anion-sensitive wetting agents investigated in

this same work had no effect on the hydrogen embrittlement of the material tested. None

of the surface-active agents had any inhibiting effect when pickling stainless steel.

Meyer(15) investigated the effects of 18 inhibitors on hydrogen embrittlement,

using a 0.58 percent carbon patented steel wire. He found that only one inhibitor gave

substantial protection, but all gave some protection as shown in Tables 1 and Z. In a

15 percent (by weight) HzSO 4 solution, the protective values ranged from 5 to 87.5

percent, while corresponding values for pickling acid that contained 7.5 percent (by

weight) H2SO4 and 2.3 lb/gal FeSO4" 7H20 varied between 8.5 and 96 percent. These

protective values were based on the ntunber of stress reversals applied to the wire

specimens to produce failure. Although the dynamic bend test will indicate severe em-
brittlement, it is not as sensitive as the sustained-load test for determining suscepti-

bility to hydrogen-stress cracking. The results of this investigation also showed that

the inhibiting action of the pickling additive on metal corrosion is in no way related to its

inhibiting action on hydrogen embrittlement.

Meyer also evaluated a number of surface-active substances under the same con-

ditions as those used for testing the inhibitors. The substances evaluated were non-

ionizing wetting agents that were shown by Zapffe and Haslem(14) to exert a beneficial

effect in inhibiting hydrogen embrittlement in low-carbon steels. These nonionizing

wetting agents had only slight inhibiting effects on hydrogen embrittlement in this steel

wire of higher carbon content.

Anderson and associates (16) studied the effect of certain organic inhi[-',tors on the

absorption of hydrogen by AISI 1095 steel pickled in 4.8 N HC1. They suggest that the

rate : hydrogen entry into the steel and consequent embrittlement might be decreased

by affecting the rate of any one of the following reactions: (1) chemisorption of hydrogen
on the steel surface, (2) recombination of atomic hydrogen into the molecular form,

and (3) removal of chemisorbed hydrogen from the metal surface by reaction with an

inhibitor. Their results showed that the quantity of hydrogen taken up by uninhibited

acid was negle_'bl3, most of the hydrogen being presented to the steel surface. DHQ*,

in the concentrations used, cut the rate of hydrogen evolution by a factor of 50. While it

was effective in reducing the total metal attack, it did not appreciably affect the H2/Fe

ratio (millimoles of hydrogen evolved to millimoles of iron simultaneously dissolved).

With hexamine, or. the other hand, the hydrogen taken up by the inhibitor (and, thus,

made unavailable to the steel) increased with the amount of the concentration of the hex-

amine. A combination of DHQ and hexamine cut the rate of hydrogen evolution by a fac-

tor of Z00. Enough DHfil in the presence of the hexamine affectively stopped the uptake

of hydrogen by the hexamine.

Several studies have been conducted to evaluate the effectiveness of acetylenic

alcohols and derivatives for limiting both hydrogen absorption by steel and dissolution

of steel during pickling. Although information on the degree of protection of mild steel

by acetylenic acid inhibitors is presented in several papers, quantitative information is

not given on the hydrogen absorption by steel immersed in acid solutions containing

these inhibitors. Hudson and Riedy(17) studied the effectiveness of 16 water-soluble

*r)HQ stands for 6-methyl-3-p-tolyl-3.4-dihydroquinazoline.
BATTELLE MEMORIAl. INSTITUTE
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TABLE 1. HYDROGEN EMBRITTLEMENT ,AND PRO'rECTIVE VALUES AT 150 _15)

A = lb percent by weight of sulfuric _cJd (1.58 lb H2SO4/gal ).

B = 7.5 pe cent by weight of s,.Jutic acid with 2.3 Ib FeSO 4 • 7H20/gal.
i

A B

Stress Revemab .Hydrogen-Embrinlement Sueu Revenab Hydrogen-EmbrRtlement

(Ulumate Bending Pmcec.tive Value (a). (Ultimate Bending Prnteczive Value(a).

Inhibitor Strength) percent Strength) percent

Plain acid 5. 6 0 7.2 0 /
/Adacid -EB 11.2 87.5 11.6 94. 0

Adac_d-EN 8.5 45,0 ii.1 96.0

Adacid -EN-R 7.2 25.0 8.5 27.0

Adacld -HV 6.4 12.5 8.2 23.0

Adacid-ER 6.6 15.5 8.7 31.5

Adacld-EX 8 3 42.0 I0.3 65. 0

German product f. 9 20.0 8.2 ?3.0

German product 7.2 25. 0 8. 6 29.0

,_,e_manproduct 7.I 23.5 9.6 50.0

C_man product 7.5 30.0 G. 7 31.0

German product 8.4 44.0 9.2 41.5

German product 7.9 36.0 9.0 37. ,5

German product J. 5 61.0 10.0 58.5

German product ._.9 5, 0 7.6 8.5

American product % 3 26.5 9.7 52.0

American product 8.6 47.0 10.2 62.5

American product 7.8 34.0 9.0 37.5

French product 7.9 36.0 8.7 31.0

(a) Hydrogen-embrl_lement"protentive value • I00 B_,
where

Br • IM of $trell reven_It in plain acid

Bg • loa of suet" reven_ in inhibited acid.

TABLE 2. METAL CORROSION AI_ HYDROGEN EMMh'_rLEMENT(15)

Pickling solution containing 1,5percent by weight or 1.58 lb/gal
of sulfuric acid at 150 F.

Metal Co,talon Hydrogen Embrltclemem
Protective Value(a). Protective Value(b).

Inhibitor percent percent

Plain acid 0 0

Adacld-EB 94.3 87.5

Adacid-EN 89.5 45. 0

Adacid-EN-R 95.0 25. 0

Adacid-HV 76 7 12.5 Y
Adanid-ER 88.8 15. 5

Adacid-EX 82. 2 42.0

German product 82.5 20.0

German product 71.5 25.0

German product 85.0 23.5

German product 47.5 30.0

German product 76.5 44.0

German product 76.2 32.0

German product 85.0 61.0

German product 76.6 5. O

American p_luct 70.5 26.5

American product 87.5 47.0

American product 94.5 34. 0

French product 72.5 36.0

(a) Cotn_ion protective value = i00 V_r-Vg.

Vr

where

V r • Icm of iron in phJ.n acid

Vg •lOlS of iron in inhibited acid.

(b) l-lydrogen-embrinlement [xomctive value • 100 Br-B _
%

where

Br • logs of ,item revenall in plain acid

Bg • Io_ of strem revenals in inhibited acid.

B A T T E L L E M sr M O R I A L I N S T I T U T E:
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acetylenic compounds and two commercial inhibitors u_ed in ZN sulfuric acid at I00 F.

Ten acetylenic alcohols and six acetylenic diols were studied. The effectiveness of

these compounds was determined by measuring the metal loss and the amount of hydro-

gen absorbed (warm-extraction method) for a low-carbon steel immersed in these

solutions for either 4 or g4 hours. Six of the acetylenic alcohols and two of the

acetylenic diols were similar to the two commercial proprietary inh!bitors in their

ability to retard the dissolution of steel in acid. Most of the acety!enic compounds were

as good as, or better than, the better of the two commercial proprietary inhibitors in

limiting hydrogen absorption by the steel. Most of the acetylenic inhibitors that were

effective at 100 F also were effective at 180 F. Commercial inhibitors, however, were

not nearly so effective hi limiting hydrogen absorption at the higher temperature as

they ,.'.'ereat I00 F (Table 3).

The mechanism by which organic inhibitors reduce attac]_and limit hydrogen ab-

sorption is stillnot definitely known. It is believed that the polar atoms of nitrogen and

sulfur serve to attach the molecules to the metal surface at points where otherwise some

essential step in the corrosion process would occur. Generally, the efficiency of inhibi-

to_ J-n(:reases as the length and number of side chains attached to the polar atom in-

crease. However, some small molecules, such as formaldehyde, can act as inhibitors.

Jvlostof the present effective inhibitors interfere mainly with the anodic reaction, a/-

though the cathodic reaction also is usually retarded somewhat.

Although certain inhibitors have been shown to be effective in reducing the absorp-

tion of hydrogen by steel during acid pickling, it is best to avoid pickling and all cathodic

cleaning processes altogether for high-strength steels, which are especially susceptible

to hydrogen-stress cracking. For these materials, scale is best removed mechanically,

and only alkaline or anodic cleaning processes should be used.

ELECTROPLATING PROCESSES TO MININLIZE HYDROGEN

EMBRITTLEMENT 0F ULTP_AHIGH-STRENGTH STEELS

Electroplating of metallic materials is done for a variety of reasons, including
I

ornamentation, protection against corrosion, building up of worn parts, improving wear

resistance, improving light reflectance, or otherwise changing the physical and chemi-

cal properties of the surfaces being plated. The most common reason for electroplating

high-strength steel parts used in the aircraft and aerospace industries is for protection

against corrosion. However, the application of electrodeposited coatings to solve cor-
rosion problems can make the part susceptible to failure by another mechanism,

namely, hydrogen-stress cracking. I

]
Cadmium Electroph_ting

Cadmium electroplates on steel parts have bee,_ used extensively in the aircraft i

industry to provide _alvanic protection against corrosion. However, cadmium plating

from conventional cyanide baths has been shown to induce severe embrittlement in high- I
strength steels. As a result of the restrictions placed on cadmium electroplating of

certain steels with strengths above _0 ksi, other methods of corrosion protection were

used. But, most of these methods have been shown to provide less corrosion
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protection than cadmium electroplating. Consequently, considerable effort has been ex-

pended in trying to develop cadmium-electroplating processes that are nonhydrogen=
embrittling that would produce deposits with corrosion=protection properties equal to
those of bright-cadmium electroplates deposited from cyanide baths.

Several approaches have been tried in an attempt to develop nonembrittling elec-
troplating procedures. Some of these are:

(1) Deposition of thin, porous plates at high current densities. The porous

plates would facilitate the subsequent removal of hydrogen by baking

(Z) Plating from 100 percent cathodically efficient electrolytes to prevent
hydrogen codeposition

(3) Barrier plating by depositing thin undercoats of cadmium or other
metals: baking, and then overplating to the desired t, ickness

(4) Suppression of hydrogen formation in aqueous electrolytes by suitable
additions

(5) Plating from organic baths that contain no ionizable hydrogen.

The following paragraphs describe the results of a number of these investigations.

A cooperative testing program (Project 6-61) was conducted by the Aerospace

Research and Testing Committee(18) to compare the hydrogen-embrittlement character-
istics of several electroplating systems that were reported to be nonembrittling. The

plating processes were evaluated by sustained=load tests employing notched tensile
specimens (0.00B-inch notch root radius) and Douglas ring specimens made of AISI 4340
steel (Z80=ksi tensile strength).

The results of the tests employing the Douglas ring specimens were inconclusive,
as these specimens were not sufficie_fly sensitive to detect embrittlement except in
the cases of severe embrittlement. The results of the tests employing the notched
tensile specimens were as follows (the lower critical stress* is shown in parent_,eses):

(1) Triethanolamine (Z60,000 psi.) and Boeing BAC 5718 high-efficiency
bath (270,000 psi). Very little embrittlement shown. Lower critical
stress approximately 10,000 psi below upper critical stress. The tri-

ethanolamine system employs no baking treatment, while the Boeing
BAC 5718 process employs a 23-hour bake at 375 F.

(Z) Lockheed PS 491 g Type II Class C (Z45,000 psi) and Douglas K.Z
Cyanide (ZZ5,000 psi). Only slightly more embrittlement shown than
the processes listed under (1). The Lockheed process employs an
8-hour bake at 375 F, while the Douglas process is followed by a
_3=hour bake at 395 F. Although the Dalic brush plating appeared
to be in this class_ there were not sufficient data to prove this.

(3) Cleveland Pneumatic Tool, CPT 8_06 (_15,000 psi). This process is
followed by a Z3=hour bake at 380 lv to 400 F.

*The lower critical stress i., defined as the maximum stress to wl..lch the Sl_cimen can be loaded without ixoducing failure.
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(4) The remaining plating systems showed lower critical stresses in the

range from 185,000 psi to 65,000 psi, as follows:

Titanium cadmium plating (185,000 psi), baked 12 hours
at 375 F

Grumman nonaqueous plating, dimethylformamide

(175,000 psi), no bake /

Lockheed Type II Class B (110,000 psi), no bake

Douglas _uoborate (65,000 psi), baked 23 hours at 395 F,

bath contained brightener.

In both the titanium-cadmium plating process and the Douglas fluoborate

process, the specimens were stripped after initialplating and were re-

plated. Itwas not known if this procedure was responsible for the lower

values of lower critical stress obtained from these systems; however, it

was suspected that it had an influence on them.

More recent investigations of the titanium-cadmium, and the Grumman dimethyl-

formamide electroplating processes, which will be discussed in subsequent sections,

have shown these processes to be essentially nonembrittling.

Of the five least-embrittling plating systems (Groups 1, Z, and 3), one was an

organic system (triethanolamine solution). The remaining four systems involved plating

at high current densities (50 to 70 asf), and none of the baths contained brighteners.

These plating conditions would be expected to produce porous deposits that would facili-

tate hydrogen removal during the indicated baking treatments employed after plating.

Also, only one of these processes, the Lockheed PS 491 g, Type II, Class C employed

an acid etch prior to plating. All the other processes utilized abrasive cleaning prior

to electroplating.

As was discussed in the previous review of the literature (1), other investi-

gators(19,_0) have shown that cadmium deposits from high-efficiency cyanide baths '
without brighteners, and cadmium plates deposited at high current densities, are porous.

Consequently, postplating baking at 375 F for 23 hours usually completely relieves any

en_brittlement. However, the appearance of these plates is not satisfactory, and their

corrosion protection is questionable. When brighteners are added to these baths to

produce smooth, bright, fine-grained deposits, the specimens are embrittled even after

receiving the baking treatment, as is shown in TaMe 4. Therefore, even though porous

plates can minimize hydrogen embrittlement, they are not desired and the search for

more desirable systems has continued.

The hydrogen-embrittling tendencies of the cadmium fluoborate electroplating pro-

cess have been evaluated by many investigators, and this bath has been shown to be less

embrittling than conventional cyanide-cadmium processes. The cadmium fluoborate

bath operates at nearly 100 percent plating efficiency and, since hydrogen evolution is

inversely r_lated to efficiency, very little if any hydrogen is evolved. As a result,

much less hydrogen is available to enter the steel during fluoborate-cadmium plating

compared to conventional cyanide-cadmium plating (conventional cyanide baths are about

85 percent efficient at a current density of 25 asf). Devanathan, Stachurski, and

Beck(Zl), who measured the quantity of hydrogen permeating thin membranes of Armco
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ingot iron during va.ious electroplating processes, demonstrated that hydrogen absorp-

tion by the iron was much lower for fluoborate plating than for the cyanide process.

Their results are shown in Figure 1. By integrating the area under the curves, they ob-

tained the total quantity of hydrogen tha'.: permeated each membrane. These values are

presented in Table 5. As can be seen from these results, the fluoborate plating process

introduced significantly less hydrogen than did the cyanide plating process. This be-

havior was attributed to the low steady-state hydrogen coverage from the fluoborate

bath. It is also interesting to note the initial steep rise in hydrogen permeation, parti- /
cularly from the cyanide-cadmium bath. and then the decrease in permeation. The

initial steep rise in permeation from the cyanide bath was attributed to the high hydro-

gen coverage and the effect of the CN" ion on the recombination rate of hydrogen

atoms to form molecules, as CN- has been shown to effectively retard recombination.

The decrease in hydrogen permeation with increased plating time was explained by the

barrier effect of the cadmium layer after a critical thickness was deposited.

Fannin(g2) evaluated the hydrogen-embrittling tendencies of the cadmium fluobo-

rate process using the sustained-load tests with notched tensile specimens of AISI 4340

steel heat treated to the 220 to Z40-ksi strength level. All the cadmium fluoborate

specimens survived applied stresses of 75 percent of the notched-bar tensile strength of

unplated specimens for 100hours. However, when the stress was increased to 90 per-

cent of the notched-bar tensile strength, four of six specimens that had not been baked I

after plating failed in less than 50 hours. Only one of the specimens baked for 3 hours
at 375 F, and cne baked for 24 hours at 375 F failed at this higher .=tress level. For

the specimens with no bake and those with a 3-hour bake, the performance in the sus-

tained-load test was significantly better than specimens receiving the same postplating

processing after conventional cyanide-cadmium electroplating.

Forney and Katlin {23) also showed the superiority of cadmium fluoborate plating

over cyanide-cadmium plating using half-ring specimens of AISI 4340 steel heat treated

to the 230-ksi and 270-ksi strength levels. Again the specimens plated in the i'luoborate
bath were initially less embrittled, and embritflement relief was more readily achieved

than specimens plated iw cyanide bath. Geyer, Lawless, and Cohen (20) obtained similar

results in evaluating the cadmium fluoborate bath with various additions to change the

porosity of the deposit. These investigators used sustained-load tests employing /
notched tensile specimens of AISI 4340 steel heat treated to the Z90-ksi strength level

(notched-bar tensile strength = 435 ksi). The criterion used for acceptance of a plating

system as being nonhydrogen embrittling was that four of four specimens withstand an

applied stress of 300 ksi for the duration of the tes*.. In no case did the cadmium fluobo-

rate specimens (baked 23 hours at 375 F) meet this criterion, even though they showed

less embrittlement than did conventional cyanide-cadmium-plated AISI 4340 steel speci-
mens •

These investigators also evaluated the susceptibility of SAE H-I 1 steel (280_ksi

strength level) to hydrogen embrittlement induced by electroplating in a cadmium fluobo-
rate bath. This steel showed no detrimental embrittlement after plating and baking for

23 hours at 375 F. This behavior was attributed to the reduced susceptibility of the

H-ll steel to hydrogen embrittlement.

Dougherty (24) reported an interesting result obtained during his evaluation of the

cadmium fluoborate process employing a bath that contai'_ed a brightener. Although the

AISI 4140 and AISI 4340 steel specimens plai .d in the fluoborate bath were embrittled

only about one-fourth as much as were the specimens plated in the cyanide-cadmium

hath, complete, or practically complete embrittlement relief could not be obtained with
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0 I00 200 300 400 500 600 700 eO0

Time of Plrm_ion, wc A-_710

Thickness of Membrane = 0.77 mm

Current Density = 8. 1 ma/cm 2

FIGURE 1. PERMEATION OF THIN ARMCO IRON MEMBRANE BY HYDROGEN

DURING ELECTRODEPOSITION OF CADMIUM FROM CYANIDE
AND FLUOBORATE BATHS(21)

Permeation units are rnicroamperes per square centimeter, the
current in the anode circuit at the exit surface of the iron membrane.

TABLE 5. QUANTITY OF HYDROGEN PERMEATING ARMCO IRON MEMBRANES

DURING ELECTRODEPOSITION OF CADMIUM FROM CYANIDE AND ---

FLUOBORA TE BA THS( 2I)

Quantity of Hydrogen Permeated,
10-9 moles/cm 2

Number of Curve ElectroplaL'ng In 0-400 _, 400- 800 In 0- 800

in Figure I Bath Seconds Seconds Seconds

I Cyanide Zl. 46 5.92 Z7.38

2 Fluoborate 2.66 I.77 4. 33
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fluoborate cadmium-plated specimens. In fact, specimens baked for _ and 4 hours at
375 F showed more embrittlement than did the as-piated specimens. No explanation

was given for this unexpected behavior.

Dougherty pointed out that the fluoborate cadmium plating shows a distinct advan-

tage over cyanide cadmium for plating of parts that contain high residual tensile
stresses on the surface or surfaces to be plated. However, when the fluoborate cad-

mium process is used, baking treatments should be extended to more than 4 hours at /
375 F.

Although the cadmium fluoborate bath has been shown to be less emorittling than
conventional cyanide-cadmium baths, it requires careful control and lacks the throwing
power and covering properties of the cyanide bath. Therefore, electroplaters prefer
tbe cyanide-cadmium bath.

In 1957, investigators at C_se institute of Technology developed a new hydrogen-
embrittlement recovery treatment {25'26). The procedure was as follows: A thin layer
of cadmium (0. 125 rail thick) was deposited on the steel from a cyanide bath containing

a brightener. The specimen was then baked to full recovery (1 hour at 300 F). Finally,
a second layer of cadmium was deposited to obtain the desired Flare thirkness. The in-

vestigators reported no embrittlement after the second plating and attr-buted this be-
havior to the barrier effect on hydrogen entry of the initial thin cadmium plate. They

also reported that this technique was so efficient that no baking treatment was required
after the second electroplating operation. However, their criterion for embrittlement
relief was restoration of original ductility as measured in a conventional test. Satisfac-
tion of this criterion does not ensure freedom from hydrogen-stress cracking in a sus- I:
rained-load test.

Several other investlgations of this technique conducted more recently have pro-
duced contradictory _esults. Micillo (27) tested C-ring specimens of AISI 4340 steel

and AMS 6427 {AISI _:;30 M) steel (220-ksi and 215-ksi yield strengths, respectively)
that had been plated with a 0. l-rail l_yer of cadmium from cyanide baths with and with-
out brighteners, baked 1 hour at 375 F, than overplated to a total plate thickness of
0.5 mil of cadmium. Prior to testing, the specimens were baked 23 hours at 375 F.
All the specimens surviveo 646 hours at stresses equal to 90 pe_ cent ef their yield
strengths.

However, Forney and l_tlin(23) evaluated this technique using a half-ring com-
pression test employing AISI 4340 steel with an initial thin cadmium plate deposited from
a cyanide bath without a brightener and subsequently baked to full recovery. They found
that overplating the initial _,.in deposit with cadmium produced significant embrittlement
as measured by reduction in breaking !oad and deflection at failure. When the initial

MM

thin cadmium plate was overplated with chromium, the embrittleme,_t was even more
severe. Obvio-asly, in their experiment, the thin cadmium preplate deposited from a I
cyanide bath without a brightener did not act as a barrier to hydrogen entry int') the
steel.

Dougherty(24) also evaluate_ the barrier effect of a thin cadmium electroplat_ to
hydrogen embrittlement resulting from subsequent cadmium overplating using half-ring
specimens of AISI 4140 steel and AIS! 4340 steel both heat treated to strength levels of
260 ksi and 285 ksi. The specimens were initially plated with 0. 125 rail of cadmiun_

from cyanide baths with and without a brightener and then were baked for 2 hours at
325 F. As preplated and baked, these specirrens showed losses of ductility (as measured
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by deflection at fracture) ranging from 8 to 18 percent, except for the AISI 4340 speci-
mens at the 285-ksi strength level• which showed a lo_u of only 4 percent. (These

latter specimens were not embrittled significantly• even when no barrier preplate was

-- used. ) No appreciable decreases in ductility or strength occurred as a result of over-

plating a bright preplate, but the porous preplate (without brightener) allowed hydrogen

to penetrate and_ except for the AISI 4340 steel at the 285-ksi strength level, cause

significant embrittlement as shown in Figure 2.

Dougherty suggested the following process as an alternate to the conventional one-

step electroplating proces s :

(1) Plate to 0. 125 rail from a cyanide cadmium bath containing a brightener
(2) Bake for 2 to 4 hours at 375 F

(3) Overplate to 0.5 rail to obtain a bright, fine-grained finish.

This duplex plating procedure should have the added advantage of making any

porosity network that might exist in the deposit discontinuous • thus increasing the cor-
rosion resistance.

It appears from the results of these investigations that a thin (0. 125 rail thick)_

bright-cadmium electroplate baked to full recovery acts as an effective barrier to

hydrogen penetration during subsequent overplating. However• a dull (porous) pre-

plate is not an effective barrier, and significant embrittlement can result from hydro-

gen introduced into the steel in the overplating operation.

Thin undercoats of copper and nickel also have been investigated to determine

their effectiveness in preventing hydrogen embrittlement. Beck and Jankowsky(28) in-
vestigated the effectiveness of Watts-type bright nickel and pyrophosphate copper under-

coats (both electroplated coatings) ._n minimizing embrittlement induced by overplating
with cyanide cadmium and conventional chromium electroplates, both of which have been

shown to severely embrittle ultrahigh-strength steels. Their results indicated that, re-
gardless of the metal that forms the undercoat or the plate deposited on it• the protec-

tion against hydrogen embrittlement provided by the undercoat usually increases with

its thickness• as is shown in Figure 3. When the undercoat becomes tl_ck enough•

overplating no longer induces additional embrittlement• and the reduction in ductility as

measured by reduction in deflection at failure remains the same as it was for the under-
coat alone.

Results of tensile tests of specimens with copper and nickel undercoats overplated

with cyanide cadmium are shown in Figure 4. It is shown that there is a minimum
thickness of undercoat that must be exceeded before the beneficial effect of the under-

coat is obtained. Also, the ductility of the specimens increased rapidly with increased

undercoat thickness, until the ductility (reduction in area) of the specimen plated with
copper or nickel alone is achieved.

More sensitive sustained-load tensile tests indicated less beneficial effect of the

undercoats in minimizing hydrogen _,mbrittlement than did the other two methods; this i
behavior is shown in Figures 5 and 6. The investigators concluded that the thin nickel

and copper metallic undercoats offered some protection against hydrogen embrittlement

resulting from subsequent overplating with cyanide cadmium or chromium, and that

this protection resulted from the barrier effect of the coatings to hydrogen diffusion.

Barrier effectiveness is apparently related to the thickness of the undercoat. The
!
{
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J

-----0-_- Preplate with brightener 0, O 4ZB F temper

-----O--- Preplate without brightener X, A 550 F temper

..--- _ ----,. Preplate with brightener C " Control specimen

.... X---- Preplate without brightener P = Preplated specimen

O = Overplated specimen

FIGURE Z. DATA SHOWING THE BARRIER EFFECT OF THIN CADMIUM

ELECTROPLATES DEPOSITED FROM CYANIDE BATHS WITH

AND WITHOUT BRIGHTENERS ON HYDROGEN EMBRITTLE-

MENT CAUSED BY OVERPLATING WITH CADM/UM(z4)
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._ Cantrels

_os _ ptatN

.'_ of _,|n.

• Pyrophosphate copper, overplated with cyanide cadmium
Q Pyrophosphate copper, overplated with chromium

Bright Watts nickel overplated with cyanide cadmium

FIGURE 3. THE EFFECT OF THICKNESS OF COPPER AND NICKEL UNDERCOATS
OVERPLATED WITH CYANIDE CADMIUM OR CHROMIUM ON BEND
DUCTILITY(z8)

em_.___,

°SO

|4o

_'" _ _ 4 60TN P.CyanlcleCA
o io_$ io-4 _-s x)_

A-e4_I_
Thickness of Undercoasoin.

V Pyrophosphate copper undercoat

• Bright Watts nickel undercoat
• Sulfarnate nickel undercoat

FIGURE 4. THE EFFECT OF COPPER AND NICKEL UNDERCOATS
OVERPLATED WITH CYANIDE GADMfUM ON TENSILE

DUCTILITY(zS)

Reduction in Area on 0. 505-in.-diarn Tensile Bars

Rate of cross-head travel from yield to ultimate :
0. I in. /rnin.

Strain rate to yield rnaintained at 0.05 in. /in. /rnin.
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Overplated with Cr - Avg thickness 1 x 10 "3 in. • Chromium plated - Avg thickness 1 x 10 -3 in.
All thicknesses taken at base of notch.

FIGURE 5. RESULTS OF STATIC-LOADING TESTS OF CYLINDRICAL NOTCHED TENSILE SPECIMENS, SHOWING
THE BARRIEREFFECT AGAINST HYDROGEN OF A PYROPHOSPHATE COPPER UNDERCOAT (28)

Geometric Stress-Concen[ration Factor = 6.0,
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Overplated with c"_nide cadmium - & Cyanide-cadmium plated - Avg thickness 2 x 10 -4 in.
Avg thickness 2 x 10 -4 in,

All thicknesses taken at base of notch.

FIGURE6. RESULTS OF STATIC-LOADING TESTS OF CYLINDRICAL NOTCHED TENSILE SPECIMENS SHOWING
THE BARRIEREFFECT AGAINST HYDROGEN OF A BRIGHT WATTS-NICKEL UNDERCOAT(28)

Geometric Stress-Concentration Factor = 4. 2
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deficiencies in the barrier effectiveness of the coatings, as revealed by the sensitive

delayed-failure tests, were attributed to plating imperfections.

Later, the effects of pyrophosphate copper ard Watts-type bright nickel as under-

coats for cyanide-cadmium plating were reevaluated (_4). In this study, the undercoats

were plated to a thickness of 0.5 rail, which, according to the previous investigation,

was sufficient to act as an effective barrier to entry of hydrogen into the base metal.

The undercoats were then overplated with 0.5 rail of cadmium from the embrittling

cyanide bath. No baking was applied after either electroplating process. Also, a

copper strike was applied to the specimen prior to the pyrophosphate copper deposit.

Although neither type of undercoat completely eliminated embrittlement, both re-
duced that resulting from cyanide-cadmium plating. From the results of the tests, it

appeared that pyrophosphate copper was more effective in reducing hydrogen entry into

the steel than was the bright nickel. The author suggested that the undercoats may have

acted as effective barriers to hydrogen entry and that the embrittlement observed re-

sulted from the supposedly nonembrittling undercoats themselves and that this possibil-

it 7 justifies further investigation. He concluded that at the present time metallic under-

coats promise no particular advantage over straight, or barrier, cadmium plating.

Forney and Katlin (z3) showed that thin electroless-nickel barrier plates deposited

from both alkaline and acid baths did not prove effective in preventing hydrogen em-

brittlement of AISI 4340 half-ring specimens when overplated with cadmium from a

cyanide bath. The nickel barrier plates were 0. 16 rail thick, and the total thickness

after cadmium plating was 0.5 rail.

One reportedly low-hydrogen-embrittling process that has received considerable

study is the cadmium-titanium (Delta) process, which was developed by the Japanese.

The pl_.ting solution is similar to that of a conventional cyanide-cadmit_un electroplating

solution, except that titanium is held in supension in the plating system(Zg, 30). For

low-embrittlement cadmium-titanium plating, nonembrittling cleaning and activation

processes are used, and the bath is operated without brighteners to produce a deposit

with controlled porosity. While this approach is essentially the same as that of con-

ventional low-embrittling baths, the addition of titanium results in several significant

improvements. One of these is that adequate hydrogen embrittlement relief can be ob-

tained with less plate porosity than with other low-embrittlement processes, because

the steel picks up less hydrogen during cadmium-titanium electroplating. (Z9, 30) In

addition, the baking times required to provide adequate embrittlement relief are gen- •

erall 7 shorter; and, contrary to the behavior of conventional cadmium electroplates, the

degree of embrittlement relief has been reported to increase with increasing thickness
of the cadmium-titanium electroplate (31 ).

Possible explanations for these observations are that the titanium, which had a

greater affinity for hydrogen th&n does steel, reacts with the hydrogen evolved at the

cathode (workpiece) during the plating process and forms a stable hydride 3 leaving less

hydrogen available to enter the steel. (29,30,31) Also, the 0. 1 to 0.5 percent titanium

codeposited with the cadmium in the electro21ate could act as a hydrogen scavenger dur-
ing the baking treatment and absorb hydrogen that entered the steel during the plating

cycle. (Z9, 30,31) This explanation fits the observation that the degree of embrittlement

relief increases with increasing plate thickness, in that the increased thickness in-
creases the total available titanium, thereby increasing the scavenging potential (Zg).
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Another significant advantage of the cadmium-titanium alloy electrodeposit is it_

superior corrosion resistance. In various salt-spraytests, cadmium-titmium deposits
have been shown to be several times as corrosion resistant as conventional cadmium

electroplates. (29, 32) The inherent lack of precision of corrosion tests makes it virtually

impossible to develop quantitative data on cor:'osion resistance; however, some investi-

gators have reported no basis-metal corrosion on plated panels after more than 2000

hours of salt-spray exposure. In comparison, conventional cadmium plates hawe __ailed
within 200 to 500 hours. (29)

/
In addition, the cadmium-titanium electroplates have shown good adhesion in both

bend tests and paint-adhesion tests. (31)

The cadmium-titanium electroplate is deposited by initially applying a cadmium-

titanium strike at a cathodic current density of 40 to 45 asf for 15 seconds. Then the

current density is reduced to 15 to 30 asf until the desired plating thickness is deposited.

At a current density of 30asf, a0. 0005-inch plate is deposited in about 12 minutes.(29, 31)

Cadmium in the plating bath is supplied as conventional anodes, and titanium is

added in the form of a proprietary paste, which is placed on the filter cloth of a continu-

ously operating filter. The titanium content of the bath is usually maintained at approxi-

mately 80 ppm by daily additions of hydrogen peroxide to the plating solution. Normally,

the bath is operated so that the plate contains between 0.1 and 0.5 percent titanium.

This titanium concentration range appears to produce a plate with the most desirable

properties. At higher concentrations3 the excess titanium appears as a white titanium

dioxide powder on the plate surface and does nothing to enhance the plate quality. (29)

The titanium in the plating bath is present in a relatively unstable form, necessi-

tating at least daily analysis and adjustment of the titanium content. This bath is also

sensitive to organic and metallic contaminants that act as brighteners. Therefore, only

deionized water and high-purity chemicals should be used to prepare the solution. Con-

tinuous filtration is required, and the entire bath must be filtered two or three times an
hour. Iron has been shown to contaminate the bath and have a severe adverse effect on

its performance. It causes spontaneous decomposition of the titanium salt with subse-

quent loss of perioxide and reduction of the titanium content of the bath and plate.

Therefore, the iron concentration in the plating solution must be less than 100 ppm.

Because of the sensitivity of the bath to metallic contaminants, the tankj filter,

and associated plumbing should be lined with, or constructed from, a suitably inert

material. Also, steel jigs and holding fixtures must be covered with a maskant to avoid

contact with the plating solution.

Tables 6 and 7 present the results of several evaluations of the embrittling ten-

dencies and corrosion resistance of the cadmium-titanium electropiating process and

resulting electroplates, respectively.

Menasco has used the cadmium-titanium process to electroplate landing gears and

many heavy structural components for a commercial jet airliner. Boeing has used this

process to electroplate landing struts, flap carriages, and flap tracks for the Boeing

7_-7 jet airliner.

The dimethylformamide (DMF) electroplating bath developed by Grumman Air-

craft (35) is a nonaqueous bath and, therefore, does not contain ionizable hydrogen. The

cadmium is supplied by cadmium iodide and cadmium anodes.
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The results of two investigations employing notched tensile specimens of AISI 4340

steel (260 to Z80-ksi strength range) that were electroplated by the DMF process are

contradictory. In one study(18), debcribed previously, DMF-plated notched tensile

specimens failed in the sustained-load test at applied stresses of 180,000 psi. In the

other study (35), 18 notched tensile specimens survived applied stresses equal to 75 per-

cent of the notched-bar tensile strength of unplated specimens and 5 specimens survived

applied stresses of 90 percent of the notched-bar tensile strength. In both studies, the

specimens were prepared for electroplating by mechanical cleaning, and no postplating

baking treatment was employed. For comparison, Micello( TM plated two specimens in

a conventional cyanide-cadmium bath. Both of these specimens failed at applied stresses

of 75 percent of the notched-bar tensile strength after 13 hours, even though they had
been baked for Z3 hours at 375 F after plating. It also was reported that the adhesion

and corrosion protection obtained with the cadmium deposit from the DMF bath com-

pared favorably with deposits obtained from the aqueous cyanide plating bath.

The differences in the embrittling tendencies oi the DlVlF-cadmium electroplating

process observed in these two studies have not been explained. However, it was recom-

mended in the study where embr._ttlement was apparent that this process be evaluated

further, but whether this was done has not been reported.

A selective-plating process that has been reported to be nonhydrog_n embritfling

was developed recently by Selectrons, Ltd. (36) The Selectron Cadmium LHE process

has been reported to permit rapid deposition of cadmium on ultrahigh-strength steels

without introducing significant hyarogen embrittlement. Such deposits have fulfilled the

requirements of specification QQ-P-416a without being baked after plating,. (37) It also

has been reported that the corrosion resistance of this cadmium coating was equal to

that of conventional cadmium electroplates, if the manufacturer's recommended prac-

tices were followed. (37) The Selectron Cadmium LHE process has been approved for

selective-plating operations on ultrahigh-strength steels with tensile strengths up to

240 ksi by Douglas Aircraft Company and on steels with tensile strengths to 280 ksi

by Lockheed Aircraft; neither requires subsequent baking treatments. (38)uP

While the above-mentioned results for the Selectron Cadmium LHE process were

obtained with brush- or selective-plating operations, tests have been conducted by the

United States Naval Air Station, Alameda, California, on the use of Cadmium LHE

solution in a bath. Although no embrittlement data were given, it was reported that dif-

fusion results obtained with a Lawrence hydrogen gage indicated that the hydrogen pene-

tration with Cadmium LHE was approximately 10 percent of that obtained when ufing the

Delta cadmium-titanium process. (38)

Table 8 presents some of the results of the evaluation of the Cadmium LHE pro-

cess reported by Jankowsky.(37)

This process has been used to repair-plate a large P-3A main landing gear compo-

nent_ originally vacuum cadmium plated, made from an ultrahigh-strength steel (Z60 to

Z80-ksi tensile strength) by the U. S. Naval Air Station, Alameda, California. (39)

Nickel Plating

Nickel electroplates with various properties are applied to metal parts for a vari-

ety of reasons. General-purpose nickel plates produced by Watts, sulfamate, and
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TABLE 8. RESULTS OF TESTS WITH NOTCHED C-RING SPECIMENS TO

]_VALUATE THE HYDROGEN-EMBRITTLEMENT /

TENDENCIES OF VARIOUS SELECTRON CADMIUM-PLATING

PROCESSES(37)

Material: AISI 4340 steel; Z60 to Z80-ksi strength level

Applied Stress.

Process percent NTS(al Time for Failure

A. Results With Rin_s Stressed After Plat..ig

Standard Selectron 82 5 rain

Standard Selectron 8Z I min

Standard Selectron 75 15 rain

Standard Selectron 75 ! hr and 15 min

Selectron Type FC 82 5 hr and 26 re'in

Selectron Type FC 82 1 hr

Selectron Type FC 75 3 hrs and 3Z rain

Selectron Type FC 75 31 hr

Selectron Type LHE 82 40 hr(b)

Selectron Type LHE 8Z 40 hr (b)

Selectron Type LHE 75 200 hr(b)

Selectron Type LHE 75 200 hr (b)

Conventional Cyanide Cd 8Z Failed on loading

Conventional Cyanide Cd 82 Failed on loading

j'

B._._ Results With Prestressed Rin_s

Standard Selectron 50 Failed during plating

Standard Selectron 50 Failed during plating

Selectron Type FC 50 Failed during plating

Selectron Type FC 50 Failed during plating

Selectron Type LHE 50 72 hr (b)

Selectron Type LHE 50 7Z hr(b)

Conventional Cyanide Cd 50 Failed during plating

Conventional Cyanide Cd 50 Failed during plating

(a) NTS = notched-bat tensile strength.
(b) Specimen did not fail in time indicated.
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_quoborate baths are used primarily to protect iron, copper, and zinc alloys from atmo-

spheric corrosion; to alesser extent they are used also for decorative purposes. Heavy

deposits from the Watts bath are employed to build up worn or undersized parts and to

provide protection against corrosive chemical environments. Special-purpose nickel

deposits are selected either because of an unusual property of the deposit, such as ex-

treme hardness, c r because the plating bath is particularly suited for a special applica-

tion, such as barrel plating. Black-nickel deposits, derived from baths _.ontaining zinc r

sulfate or zinc chloride, have little protective value and are used primarily to obtain a [
dark_ nonreflective, decorative finish. Bright-nickel deposits are used primarily Co

provide decorative finishes on metals that, without suitable protection, will corrode or |
tarnish. These deposits contain various amounts (0.0Z to 0. 13 percent) of sulfur, which [
reduces their corrosion resistance. They are applied most frequently as undercoatings
for chromium or one of the precious metals or as overcoatings for a sulfur-free nickel [

deposit (a combination known as "duplex" nickel). (Z) 1

In spite of many reasons for nickel electroplating_ very little information on the [
embrittling tendencies of the various nickel-electroplating baths is contai-ed in the re- i
cent literature.

Bergstedt and his associates (40) evaluated the embrittling tendencies of a Watts-

nickel plating bath using specimens of H-11 tool steel heat treated to an ultimate tensile I

strength of Z48 ksi. They used loss of ductility, as determined in a conventional tensile ]
test, as the measure of embrittlement. Their results showed negligible change in the

|

percent elongation or reduction of area of the specimens electroplated in the Watts- [
nickel-plating bath. However, these properties do not provide a very sensitive measure t
of hydrogen-stress cracking tendency.

As was pointed out in the section on barrier plating, Watts-type-nickel and bright- [

nickel electroplates have been used as undercoats in attempts to minimize hydrogen em-

brittlement resulting from conventional cyanide-cadmium plating. (24_28) In one of [
these studies(Z4)_ the investigator suggested the possibility that embrittlement detected L

in the specimens may have resulted from the electrodeposition of the barrier undercoats

rather than from the cadmium overplate.

Probert and Rollinson(41), while attempting to determine effective hydrogen-

embrittlement-relief treatments for Watts-nickel-plated specimens, found that the orig-

inal fracture angle in a bend test could not be restored with any of the selected treat- "_
ments investigated. However, they gave no details as to the extent of embrittlement

induced by the nickel-plating process.

It is pointed out in Volume II of the Mettls Handbook(Z) that nickel electroplating

can cause hydrogen embrittlement in steels, particularly those processed to strength

levels above 160:000 psi. To minimize hydrogen piclcup, nonembrittling cleaning pro-

cesses should be employed and, if acid-dip activation treatments are used, immersion

times should be held to a minimum. Nickel plating in baths at the high end of the pH

range also helps to reduce hydrogen pickup. It is also pointed out that nickel is quite

permeable to hydrogen, and, therefore, hydrogen embrittlement can be readily relieved

by baking nickel-plated steel parts at moderate temperatures for relativel 7 short periods
of time.

DiBari (42) showed that SAE 4340 steel (tensile strength of notched bars = 235 ksi)

was embrittled by nickel electroplating. Prior to nickel plating, one set of specimens

was activated by an anodic treatment in a Z5 percent by weight sulfuric acid bath_ whD.e
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another set was similarly treated in the sulfuric acid bath and then given a nickel strike
in an acid n_ckel chloride bath. Nickel plating after either activating method reduced
the tensile strength of nochedbars by about 25 percent. The lower critical stress for
failure was about 50 percent of the normal noched-bar tensile strength when the anodic
sulfuric acid etch was used, and this was reduced further by "striking " in the acid nickel
chloride bath. These specimens were subjected to delayed-failure type tests to provide
data for comparison with maraging steel.

/
The 18Ni maraging steel specimens (notched-bar tensile strength = 370 to 385 ksi)

were nickel plated after receiving either the anodic sulfuric acid etch or a three-step
activation process, that consisted of:

(1) Anodic etching in 25 percent by weight HzSO 4 for 2 minutes

(2) Immersion in chromic-sulfuric acid (CrO3, 50 g/l; H2SO4, 20 ml/1)
for 1 minute; water rinse

(3) Immersion in acid nickel chloride bath for 1 minute, then nickel

striking for 1 minute.

Essentially no hydrogen embrittlement resulted. The plating h.,d little or no effect on
the tensile-strength values obtained for notched bars, and four nickel-plated notched-
tensile specimens survived applied stresses of 90 and 92 percent of the tensile strength
of unulated notched specimens for times from 166 to 362 hours without failure.

When a l-rail chromium electroplate was applied to a nick_.l-plated 10.5 rail)
pecimen that had survived a static load of 90 percent of the normal notched-bar tens,le

strength for over 300 hours_ the specimen failed on loading at 81 percent of the notched-
bar tensile strength. Similar nickel/chromium-plated specimens that were baked at
450 F for 24 hours prior to testing survived loads of 90 percent of the notched-bar ten-

sile strength for more _han 150 hours without rupturi:xg.

Hard-Chromium. Plating

Hard-chromi.m, platingj also known a¢ industrial or engineering chromium plat-
ing_ is used primarily to restore mismachined or worn surfaces and to improve wear_
abrasion, heat, and, to a lesser extent, corrosion resistance. For these applications,
t1_e plating thickneqs generally ranges from 0. 1 to 20 mils, but for some app',ications

ev,m thicker plates are deposited. Although the chromium plates are quite heavy and
are more likely to be impervious than are decorative chromium plates_ they d,_ cont,.in
microcracks. (2) This condition appears to be quite importazLt from the standpoint of
hydrogen embrittlement.

Several investigators have =-valuated the hydrogen-embrittlement tendencies of
cc Cntional chromic acid-sulfate chromium-electroplating baths. (19, 23,24,40-43)
The results obtained from these various investigations were quite consistent in thrt _II
steels with tensile strengths above about 200 ksi were susceptible to hydrogen-stress
cracking and that the s_verity of embrittlement increased with increasing strength
I" zel. Also_ several of these investigations revealed that_ for a given steel at a given
strength level_ where it was susceptible to hydrogen embrittlement resulting from chro-
mium electroplating, the chromium bath was r,_uch more embrittling than was the
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cyaoi oc dmiombath b?=io;iti,,,roo;ecommeodedthat all parts be stress l e "e e p " t - rom'u e ectroplating.

Although conventional hard-chromium electroplating has been shown to cause

severe embrittlement in ultrahigh-strength steel in every investigation reported, it has

been shown that embrittlement relief is readily obtained by simple bake-out treat-

ments. (19,23,Z4,40,41,43) One advantage of chromium electroplates is that they can be

baked at significantly higher temperatures than can be used with cadmium electroplates,

provided these higher temperatures do not cause degradation of the base metal. As a

result, when higher baking temperatures are employed, the baking time can be reduced. ¢

In an evaluation of crack-free chromium plates deposited from the CF-500 bath

developed by Metal and Thermit Corporation and conventional (microcracked) chromium _
electroplates, investigators at Convair reported that the embrittling tendencies of the ._
two electroplates were the same. (44) Sheet specimens of Thermold A (sim,_lar to H-II)

(NTS = 220 ksi) electroplated with 2 mils of chromium from both baths failed on loading (

to an applied stress of ZOO ksi. However, while a Z3-hour bake at 375 F effectively re-

lieved the hydrogen ernbrittlement from the conventionally chromiu_n-plated specimens,

this relief treatment was not adequate for the crack-free chromium-plated specimens, i
as all the specimens failed the 1000-hour sustained-load test. It was determined that

baking at 500 F for Z hours relieved the embrittlement from the crack-free deposits;

however, _he investigators recommended a relief treatment of Z3 hours at 500 F. The _i

corrosion resistance of the crack-free coating in thicknesses above Z mils was greater .L

than that of the conventional chromium electroplates of similar thickness. L

Table 9 presents data from various investigations showing the embrittling tenden-

cies of chromium-electroplating baths and the effectiveness of baking treatments.

It is apparent from the review of the literature that little work has been directed

toward developing nonhydrogen-embrittling chromium-electroplating processes. This 'I

may be a reflection on the apparent ease of hydrogen-embrittlement relief with such ,
coatings_ or it may be that most steel parts to be chromium plated have strengths below

the levels where hydrogen embrittlement becomes significant.

The majority of the electroplating processes described in this report are reported

to be essentially nonhydrogen embrittling under the conditions evaluated. However,

until the basic mechanism of hydrogen embrittlement of steels is completely understood

and more quantitative data with respect to hydrogen in steel become available, it is

meaningless to merely state that a process is embrittling or nonembrittling. Variables i
that must be considered are the composition of the steel used to evaluate the process_

the strength level of the steel, the stress level used to determine the degree of embrit-

tlement, the test method, and the ability of the coating to allow embrittlement relief.

If these variables are fixed, then it could be stated that a process is embrittling or non-

embrittling, but only for the fixed conditions. _

!
In addition to considering the plating process itself, the entire processing history

of the material used to evaluate the process must be considered. Sufficient hydrogen I

may be picked up during heat treating and preplating cleaning and activating processes to !

render the material susceptible to hydrogen-stress cracking regardless of the embrit-

,ling tendencies of the electroplating process. Therefore, all these preplating treat-

ments must be evaluated and their ability to introduce embrittlement recognized. Those
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processes that introduce hydrogen should be eliminated or placed under strict control

to eliminate hydrogen pickup.

HYDROGEN-EMBRITTLEMENT RELIEF TREATMENTS
--, , , , , , , , , , , , , , , , , , , , , , ,

If hydrogen-stress-cracking failures of high-strength-steel parts are to be pre-

vented, hydrogen must be eliminated from the parts. The ideal way to solve this prob-

lem is to prevent hydrogen from entering the steel during all processing operations.

However, in most cases that approach is not practicable; therefore, hydrogen that is

unavoidably picked up during processing must be removed or put into a nondamaging
form.

Hydrogen in steel is quite mobile at ambient temperatures; therefore, in normally

dry air, hydrogen is constantly being lost from a piece of ferritic or martensitic steel
until the hydrogen content of the steel comes to equilibrium with its environment. The

rate of loss depends on, and varies greatly with, such factors as temperature, thickness

and shape of part, composition of the steel, whether the steel is ferritic or austenltic,

the amount of cold work, the nature of the environment, surface condition, and surface

area. Details as to the effects of these variables on hydrogen removal were presented
in ".he report on the initial literature and industrial survey{ 1 ) conducted under this con-

tract and will not be presented in the present report.

It has been shown that the rate of hydrog_tr-evolution from all steels increases

with increasing temperature, at least within a few hundred degrees of room temperature.

Therefore, the most common method of removing hydrogen from steel parts is to bake it

out. However, the solubility of hydrogen in alpha-iron increases rapidly with increasing

temperature. Therefore, baking or aging treatments to remove hydrogen from ferritic

steels must be a compromise between greater permeability or rate of diffusion obtained

at higher temperatures (so as to shorten the treatment times) and the lower solubility

prevailing at lower temperatures. Frequently a temperature between about 375 F and
400 F is used.

The early investigations of hydrogen embrittlement induced by pickling in acid so-

lutions or by ele_;rolysis showed that aging at room temperature or heating to moder-

ately elevated temperatures caused a gradual recovery of the origins/ ductility. Some

investigators reported that complete recovery had been obtained, while others found

that recovery was incomplete at either room temperature or at elevated temperatures.

However, this early work was done largely with low-carbon steel.

Apparently, low-alloy steels, heat treated to high s_rength levels, completely re-

cover the ductility lost by hydrogen introduced during acid pickling, provided they are

stored for a long time before use, or are baked at a sufficiently high temperature, and

provided they are not electroplated after pickling. For example, tensile tests of

SAE 4340 steel, heat treated to a hardness of Rockwell C47, indicated that complete re-

covery of the ductility lost as a result of pickling in hydrochloric acid for 1 hour was ac- !

complished by aging at room temperature for 5 hours or more. (45) Probert and

Rollinson(6) showed that embrittlement induced by hyd-ogen introduced during cathodic

cleaning or acid pickling was easily relieved by heating the steel at moderate tempera- i
tures for relatively short periods of time. Their results are summarized in Figure 7.

They also showed that hydrogen absorbed during cleaning and activation treatments prior
i
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FIGURE 7. REMOVAL OF HYDROGEN EMBRITTLEMENT IN A TOOL STEEL
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CHARGING(46)

Sharp-notch specimens; 230,000-psi strength level.
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to electrolytic o_ electroless nickel plating was partially removed during the plating

operations themselves_ presumably because the elevated temperatures of the solutions

caused some out-gassing of hydrogen. However, as is shown in Figure 8_ other inves-

tigators(46) have reported that baking of cathodic ally charged high-strength steel

(300 ksi NTS) specimens for 24 hours at 300 F did not completely eliminate delayed

failures at high applied stresses in the more sensitive sustained-load test.

The presence of a more or less impermeable metal coating_ such as chromium_

cadmium_ or zincj makes the evolution of hydrogen from the b_.se metal more difficult,

as is shown in Figures 9 and 10. This behavior may serve to aggravate the effects of

embrittlement and delayed failure of electroplated steel. An appropriate baking treat-

ment may restore most or all of the ductility to the plated high-strength steels. How- _

ever3 such a treatment frequently does not overcome the tendency for hydrogen-stress

cracking to occur.

Two factors that greatly influence the recovery of properties by baking electro-

plated high-strength-steel specimens are plate thickness and plate porosity. As was
pointed out in the section on electroplatingj various investigators(24* 26_ 27) have shown

that high-strength-steel parts plated with 0. 125 mil of bright cadmium could be baked to

full recovery of ductility in relatively short times (1 to 4 hours) at 375 F and replated
without further embrittlement.

Chek (47) investigated the influence exerted by variations in the thickness of

cadmium plates deposited from a cyanide bath upon recovery from hydrogen embrittle-

ment of AISI 4340 Steel (270-ksi strength level) by baking at 300 F for periods up to

24 hours. Two procedures were used for the detection and evaluation of hydrogen em-

brittlement - tensile tests of unnotched specimens and sustained-load tests using

notched specimens. Recovery_ as indicated by the restoration of original ductility in a

tensile test_ was attained at baking times of 4 hours or less when the plate thickness

ranged for 0.5 rail to 1.25 mils_ but recovery was not attained for commercial thick-

nesses of 2.5 mils or more. Under sustained loading_ however, hydrogen-stress crack-

ing occurred in spite of the baking treatment when the plating thickness exceeded

0.5 rail. These results again show that recovery of original ductiliy is not a 8atisf_tc-

tory criterion for establishing freedom from ernbrittlement.

In contrast to the results obtained with conventional cadmium-electroplated speci-

mens 3 cadmium-titanium electroplated _arts have been reported to _how increased re-
covery with increasing plate thickness. (31) This behavior i8 attributed to the "scavan-

ger effect" of the titanium in the electroplate_ and the increased plate thickness merely

provides additional titanium for this purpose.

As pointed out previously_ cadmium-plating baths without brighteners produce

plates of greater porosity than do similar baths that contain brighteners; such porous

plates facilitate the removal of hydrogen during baking treatments. The work of

Geyer and associates( TM showed that some specimens of AISI 4340 steel (290-k8i

strength level) plated from fluoborate cadmium baths with various additions to improve

the quality of the plate failed during sustained-load tests s£ter having been baked at
375 F for 23 hours. Also_ specimens plated in a high-efficiency cyanide-cadmium

bath without a brightener did not fail in the sustained-load test after being baked

for 23 hours at 375 £, but when a brightener was added to improve the quality of the

deposit_ a plated-and-baked specimen failed after only ._3 hours under sustained load.
This behavior was attributed to the electroplate's being denser ant_._ hencej providing

a barrier to hydrogen removal during baking.
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The recovery of embrittlement in specimens or parts w._th chromium electroplates

is an excellent example of the effect of plate porosity. Even though high-strength steels

have been shown to be more severely embrittled by chromium plating than by conven-

tional cadmium plating(23,z4,41,42), embrittlement relief is more easily achieved from

chromium-plated parts during baking treatments, presumably because the chromium

plate is more porous (microcracked). This was effectively demonstrated by Krieg(43)

as described previously. Investigators at Convair F_rt Worth (44) found that a Z3-hour

bake at 375 F was not sufficient to relieve embrittlement from specimens with a crack-

free chromium electroplate; however, this treatment was effective in eliminating em-

brittlement from specimens electroplated in a conventional chromium-electroplating
bath.

Probert and Ro!linson {41) also showed that the barrier effect of chromium plates

that ranged in thickness from 0. Z5 rail to 0.50 rail was of a lower order than that for

either copper or cadmiun_ deposits of comparable thicknos s. Complete relief of em-

brittlement of chromium-plated parts was obtained in less _han 5 hours at 100 C (ZlZ F).

The lower barrier effect of chromium to the removal of hydrogen during relief treat-

ments was considered to result from the grain size and the natural crack pattern of de-

posits in the high-hardness range. It was found that, on increasing the thickness of
chromium above 0.5 ,nil to effect satisfacte,:y relief from embrittlement, it was neces-

sary to exceed the time-temperature conc. : _ns established for copper and cadmium

deposits. The results of their studies are shown in Figure 11.

Temperature,F

16 I I I I I II I....

_14 -

., " FIGURE l l. HYDROGEN-EMBRITTLEMENT
8

| /_ _,_ RECOVERY TIMES AND TEMPERATURES

FOR DIFFERENT THICKNESSES OF ELEC-

2 -
0 - (_mils
200 175 150 125 tOO

Temperoture,C A-s47m

The strength level of an electroplated part also influences the effectiveness of em-

brittlernent-relief treatments. As was shown in the section on electroplating, lost duc-

tility generally can be recovered in steels with lower strength levels by short baking
times at a given temperature_ but ductility may not be completely recovered in higher
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strength steels after considerably longer baking times at the same temper_,.ture. This

behavior seems to be closely related to the susceptibility of the material to embritfle-

ment; that is, recovery is more easily achieved in the less susceptible materials. This

effect is shown by the plating processes used by one manufacturer for cadmium coating

high-strength-steel fasteners, a_ shown in Table i0.(48)

TABLE 10. CADMIUM-COATING PROCESSES USED ON
HIGH-STRENGTH-STEEL AIRCRAFT ./

FASTENERS(48)

Tensile Strength Less than 180,000 to Z50,000 psi and

of Fastener 180,000 psi Z50,000 psi higher

Spe cification QQ- P-4 !6 NAS 67 Z MIL- C- 8837

Plating Procedure Cyanide Fluoborate Vacuum

Baking Practice 3 hr at 375 F Z3 hr at 375 F None

In selecting a baking treatment, several factors must be considered. First, the

time and temperatures selected cannot cause a degradation of the properties of the base

steel. Consequently, selected temperatures are usually at least 50 degrees below the

tempering temperature of the base steel. Also, the temperature selected must not

cause damage to the plate. For example, temperatures over 400 F can cause discolor-

ation of cadmium electroplates. Also, temperatures abeve 610 F, the melting point of

cadmium, must be avoided because liqui.-1 cadmium can cause embrittlement of steel.

Under many conditions, cadmium embrittlement of steel can occur at temperatures ap-

preciably below the melting point of pure cadmium, and failures have been observed at
500 F.

In the case of age-hardening steels electroplated with chromium and nickel, the J

latitude in selecting baking treatments would appear to be much wider, as these mater-

ials are usually hardened by aging reactions taking place at considerably higher temper-

atures than the tempering temperatures applied to ultrahigh-strength steels, and these

plates are not so severely affecte_ by higher temperatures as is cadmium. For exam-

ple, some investigators have used temperatures up to 1000 F to bake out chromium-

plated AISI Type H-II steel, and temperatures up to 600 F have been used to bake out
nickel-chromium-plated specimens of 18Ni maraging steel.

1_ne results of various investigations on the effectiveness of various hydrogen-

embritdement relief treatments indicate that many variables influence the selection and

effectiveness of these treatments. These variables include steel composition, strength

level, applied-stress level, test method, the presence of a coating, and the type, struc-

ture, and thickness of the coating.

The results show that hydrogen is more easily removed when no coating ic present.

When the section size is not too great, baking at 375 for 1 to 5 hours appears to restore

the properties of high-strength steels that have been pickled or cathodically charged.

However, when a coating is present, longer baking times are necessary. Thin electro-

plates and porous electroplates facilitate hydrogen removal, while thicker plates and
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dense plates hinder hydrogen removal during baking treatments. Also, steels of lower

strength level (below about 180 ksi) have been shown to be nearly completely relieved of

the effects of hydrogen by baking treatments. However, the higher strength steels have

shown a propensity toward hydrogen-stress cracking even after lonser bakin E treat-
ments.

Investigators have shown that the ductility of a steel part, as measured in a con-

ventional tensile test, may be completely restored by a baking treatment, but the steel

may still be susceptible to hydrogen-stress cracking under sustained tensile stresses.

Therefore, only when the variables are fixed can a relief process be said to be effec-

tive, and only for those fixed conditions.
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